
Package: SRS (via r-universe)
September 3, 2024

Type Package

Title Scaling with Ranked Subsampling

Version 0.2.3

Description Analysis of species count data in ecology often requires
normalization to an identical sample size. Rarefying (random
subsampling without replacement), which is a popular method for
normalization, has been widely criticized for its poor
reproducibility and potential distortion of the community
structure. In the context of microbiome count data, researchers
explicitly advised against the use of rarefying. An alternative
to rarefying is scaling with ranked subsampling (SRS). SRS
consists of two steps. In the first step, the total counts for
all OTUs (operational taxonomic units) or species in each
sample are divided by a scaling factor chosen in such a way
that the sum of the scaled counts Cscaled equals Cmin. In the
second step, the non-integer Cscaled values are converted into
integers by an algorithm that we dub ranked subsampling. The
Cscaled value for each OTU or species is split into the integer
part Cint (Cint = floor(Cscaled)) and the fractional part Cfrac
(Cfrac = Cscaled - Cints). Since the sum of Cint is smaller or
equal to Cmin, additional delta C = Cmin - the sum of Cint
counts have to be added to the library to reach the total count
of Cmin. This is achieved as follows. OTUs are ranked in the
descending order of their Cfrac values. Beginning with the OTU
of the highest rank, single count per OTU is added to the
normalized library until the total number of added counts
reaches delta C and the sum of all counts in the normalized
library equals Cmin. When the lowest Cfrag involved in picking
delta C counts is shared by several OTUs, the OTUs used for
adding a single count to the library are selected in the order
of their Cint values. This selection minimizes the effect of
normalization on the relative frequencies of OTUs. OTUs with
identical Cfrag as well as Cint are sampled randomly without
replacement. See Beule & Karlovsky (2020)
<doi:10.7717/peerj.9593> for details.

1

https://doi.org/10.7717/peerj.9593

2 Scaling with ranked subsampling (SRS)

Depends R (>= 3.4.0), vegan (>= 2.5-6), shiny (>= 1.5.0), DT (>=
0.16), shinycssloaders (>= 1.0.0), shinybusy (>= 0.2.2)

License CC BY-SA 4.0

Encoding UTF-8

Author Lukas Beule [aut, cre], Vitor Heidrich [aut], Petr Karlovsky
[aut]

Maintainer Lukas Beule <lukas.beule@julius-kuehn.de>

NeedsCompilation no

Date/Publication 2022-03-27 14:30:09 UTC

Repository https://lukasbeule.r-universe.dev

RemoteUrl https://github.com/cran/SRS

RemoteRef HEAD

RemoteSha 5020814288a7404b31ea8668fb2d23f0c0dada3d

Contents
Scaling with ranked subsampling (SRS) . 2
Scaling with ranked subsampling (SRS) Shiny app . 4
Scaling with ranked subsampling curve (SRScurve) . 5

Index 8

Scaling with ranked subsampling (SRS)

Scaling with ranked subsampling (SRS)

Description

Scaling with ranked subsampling (SRS) for the normalization of ecological count data. It is recom-
mended to use SRS.shiny.app for the determination of Cmin.

Usage

SRS(data, Cmin, set_seed = TRUE, seed = 1)

Arguments

data Data frame (species count or OTU table) in which columns are samples and
rows are the counts of species or OTUs. Only integers are accepted as data.

Cmin The number of counts to which all samples will be normalized. Typically, the
total OTU count of the sample with the lowest sequencing depth is chosen as
Cmin. Samples with sequencing depth lower than the chosen Cmin will be
discarded.

Scaling with ranked subsampling (SRS) 3

set_seed Logical, if TRUE, a seed is set to enable reproducibility of SRS if OTUs with
identical Cfrag as well as Cint are sampled randomly without replacement. See
set.seed for details. Default is TRUE.

seed Integer, specifying the seed. See set.seed for details. Default is 1.

Details

It is recommended to use SRS.shiny.app for the determination of Cmin. SRS consists of two steps.
In the first step, the total counts for all OTUs (operational taxonomic units) or species in each sample
are divided by a scaling factor chosen in such a way that the sum of the scaled counts Cscaled equals
Cmin. In the second step, the non-integer Cscaled values are converted into integers by an algorithm
that we dub ranked subsampling. The Cscaled value for each OTU or species is split into the integer
part Cint (Cint = floor(Cscaled)) and the fractional part Cfrac (Cfrac = Cscaled − Cint).
Since ΣCint ≤ Cmin , additional ∆C = Cmin − ΣCint counts have to be added to the library
to reach the total count of Cmin. This is achieved as follows. OTUs are ranked in the descending
order of their Cfrac values. Beginning with the OTU of the highest rank, single count per OTU is
added to the normalized library until the total number of added counts reaches ∆C and the sum
of all counts in the normalized library equals Cmin. When the lowest Cfrag involved in picking
∆C counts is shared by several OTUs, the OTUs used for adding a single count to the library are
selected in the order of their Cint values. This selection minimizes the effect of normalization on
the relative frequencies of OTUs. OTUs with identical Cfrag as well as Cint are sampled randomly
without replacement.

Value

Data frame normalized to Cmin.

Author(s)

Lukas Beule, Vitor Heidrich, Devon O’rourke, Petr Karlovsky

References

Beule L, Karlovsky P. 2020. Improved normalization of species count data in ecology by scaling
with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593

<https://doi.org/10.7717/peerj.9593>

Examples

##Samples should be arranged columnwise.
##Input data should not contain any categorial
##data such as taxonomic assignment or barcode sequences.
##An example of the input data can be found below:

example_input_data <- matrix(c(sample(1:20, 100, replace = TRUE),
sample(1:30, 100, replace = TRUE),sample(1:40, 100, replace = TRUE)), nrow = 100)
colnames(example_input_data) <- c("sample_1","sample_2","sample_3")
example_input_data <- as.data.frame(example_input_data)
example_input_data

4 Scaling with ranked subsampling (SRS) Shiny app

##Selection of the desired number of counts
##(e.g., total OTU counts of the sample with the lowest sequencing depth):

Cmin <- min(colSums(example_input_data))
Cmin

##Running the SRS function
SRS_output <- SRS(example_input_data, Cmin)
SRS_output

##Samples that have a total number of counts < Cmin will be discarded:
SRS_output <- SRS(example_input_data, Cmin+1)
SRS_output

Scaling with ranked subsampling (SRS) Shiny app

Shiny app for scaling with ranked subsampling (SRS)

Description

Shiny app for the determination of Cmin for scaling with ranked subsampling (SRS).

Usage

SRS.shiny.app(data)

Arguments

data Data frame (species count or OTU table) in which columns are samples and
rows are the counts of species or OTUs. Only integers are accepted as data.

Details

Shiny app that generates a visualization of retained samples, summary statistics, SRS curves, and
an interactive table in response to varying minimum sample size (Cmin).

Value

Launches Shiny app for SRS in the default web browser.

Author(s)

Vitor Heidrich, Devon O’rourke, Petr Karlovsky, Lukas Beule

References

Beule L, Karlovsky P. 2020. Improved normalization of species count data in ecology by scaling
with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593

<https://doi.org/10.7717/peerj.9593>

Scaling with ranked subsampling curve (SRScurve) 5

Examples

##Samples should be arranged columnwise.
##Input data should not contain any categorial
##data such as taxonomic assignment or barcode sequences.
##An example of the input data can be found below:

example_input_data <- matrix(c(sample(1:20, 100, replace = TRUE),
sample(1:30, 100, replace = TRUE),sample(1:40, 100, replace = TRUE)), nrow = 100)
colnames(example_input_data) <- c("sample_1","sample_2","sample_3")
example_input_data <- as.data.frame(example_input_data)
example_input_data

##Launching the SRS shiny app with example_input_data as input
if (interactive()) {SRS.shiny.app(example_input_data)}

Scaling with ranked subsampling curve (SRScurve)

Scaling with ranked subsampling curve (SRScurve)

Description

For each column of the input data, draws a line plot of alpha diversity indices (see metric) at differ-
ent sample sizes (specified by step) normalized by scaling with ranked subsampling (using SRS).
Minimum sample size (cutoff-level) can be evaluated by specifying sample. The function further al-
lows to visualize trade-offs between cutoff-level and alpha diversity and enables direct comparison
of SRS and repeated rarefying.

See Beule & Karlovsky (2020) <doi:10.7717/peerj.9593> for details regarding SRS.

Usage

SRScurve(data, metric = "richness", step = 50, sample = 0, max.sample.size = 0,
rarefy.comparison = FALSE, rarefy.repeats = 10,
rarefy.comparison.legend = FALSE, xlab = "sample size",
ylab = "richness", label = FALSE, col, lty, ...)

Arguments

data Data frame (species count or OTU table) in which columns are samples and
rows are the counts of species or OTUs. Only integers are accepted as data.

metric Character, "richness" (using specnumber) for species richness or "shannon",
"simpson" or "invsimpson" (using diversity) for common diversity indices. De-
fault is "richness".

step Numeric, specifying the step used to vary the sample size. Default is 50.

sample Numeric, specifying the cutoff-level to visualize trade-offs between cutoff-level
and alpha diversity.

6 Scaling with ranked subsampling curve (SRScurve)

max.sample.size

Numeric, specifying the maximum sample size to which SRS curves are drawn.
Default is 0 which does not limit the maximum sample size.

rarefy.comparison

Logical, if TRUE, median values of rarefy with n repeats (specified by rar-
efy.repeats) will be drawn for comparison. Default is FALSE.

rarefy.repeats Numeric, specifying the number of repeats used to obtain median values for
rarefying. Default is 10.

rarefy.comparison.legend

Logical, if TRUE, a legend for the comparison between SRS and rarefy is plot-
ted. Default is FALSE.

xlab, ylab, label, col, lty, ...
Graphical parameters.

Details

See Beule & Karlovsky (2020) <doi:10.7717/peerj.9593> for details regarding scaling with ranked
subsampling.

Value

Returns a line plot visualizing the change in alpha diversity indices with changing sample size.

Author(s)

Vitor Heidrich, Petr Karlovsky, Lukas Beule

References

Beule L, Karlovsky P. 2020. Improved normalization of species count data in ecology by scaling
with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593

<https://doi.org/10.7717/peerj.9593>

Examples

##Samples should be arranged columnwise.
##Input data should not contain any categorial
##data such as taxonomic assignment or barcode sequences.
##An example of the input data can be found below:

example_input_data <- matrix(c(sample(1:20, 100, replace = TRUE),
sample(1:30, 100, replace = TRUE),sample(1:40, 100, replace = TRUE)), nrow = 100)
colnames(example_input_data) <- c("sample_1","sample_2","sample_3")
example_input_data <- as.data.frame(example_input_data)
example_input_data

##Default settings of SRScurve.
SRScurve(example_input_data, metric = "richness", step = 50,

ylab = "richness",
col = c("#000000", "#E69F00", "#56B4E9"))

Scaling with ranked subsampling curve (SRScurve) 7

##Limit the compution of SRS curves to a sample size of 200.
SRScurve(example_input_data, metric = "richness", step = 50,

max.sample.size = 200, ylab = "richness",
col = c("#000000", "#E69F00", "#56B4E9"))

##SRScurve with comparison of SRS (solid lines) and repeated rarefying (dashed lines).
##Different colors correspond to indiviual samples. Cuttoff-level set to 200.
SRScurve(example_input_data, metric = "richness", step = 50,

sample = 200, max.sample.size = 200,
rarefy.comparison = TRUE, rarefy.repeats = 10, rarefy.comparison.legend = TRUE,
ylab = "richness",
col = c(rep(c("#000000", "#E69F00", "#56B4E9"),2)),
lty = c(1,2))

Index

diversity, 5

invsimpson, 5

metric, 5

rarefy.repeats, 6

sample, 5
Scaling with ranked subsampling (SRS),

2
Scaling with ranked subsampling (SRS)

Shiny app, 4
Scaling with ranked subsampling curve

(SRScurve), 5
set.seed, 3
shannon, 5
simpson, 5
specnumber, 5
SRS, 5
SRS (Scaling with ranked subsampling

(SRS)), 2
SRS.shiny.app, 2, 3
SRS.shiny.app (Scaling with ranked

subsampling (SRS) Shiny app), 4
SRScurve (Scaling with ranked

subsampling curve (SRScurve)),
5

step, 5

8

	Scaling with ranked subsampling (SRS)
	Scaling with ranked subsampling (SRS) Shiny app
	Scaling with ranked subsampling curve (SRScurve)
	Index

